

### ALTERNATIVE SUSTAINABLE ENERGY

- Peter Love
- Adjunct Professor, Sustainable Energy Initiative
- York University Challenge what is. Imagine what could be.

Vietnamese Ministry of Natural Resources and the Environment May 29, 2012



# PRESENTATION OUTLINE

• •

.

.

.

• • • •

• • •

.

. .

. . .

.

.....

.

.

.



| •B                                                                                                     | acl | kg  | rou | IN  | d   | or               | J · S | Sι       | IS | ta  | ina | ab | le | ; E | En  | e  | <u>g</u> | У <sup>°</sup> | ۰    | 0     | 0                         | ٠    | 0   |
|--------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|------------------|-------|----------|----|-----|-----|----|----|-----|-----|----|----------|----------------|------|-------|---------------------------|------|-----|
| <ul> <li>Energy Efficiency &amp; Conservation</li> <li>Renewable Energy</li> <li>Smart Grid</li> </ul> |     | •   | 0   |     |     |                  |       |          |    |     |     |    |    |     |     |    |          |                |      |       |                           |      |     |
| •R                                                                                                     | en  | ev  | vat | ble | , E | Ēn               | er    | <u> </u> | У  | 0   | ٥   | •  | ٥  | ۰   | 0   | •  | 0        | 0              | •    | 0     | 0                         | •    | 0   |
| •S                                                                                                     | ma  | art | Gr  | id  | 0   | 0                | •     | •        | •  | •   | •   | •  | •  | •   | •   | •  | •        | •              | •    | 0     | •                         | •    | •   |
| •L.e                                                                                                   | ess | sor | าร  | fro | on  | ר <sup>י</sup> ( | Ca    | an       | a  | dia | an  | Ē  | Ξx | pe  | eri | er | ٦C       | e              | ۰    | 0     | 0                         | ٠    | 0   |
| • D                                                                                                    | isc | us  | sic | )n  | 0   | 0                | 0     | •        | •  | •   | •   | •  | •  | •   | •   | •  | •        | •              | •    | 0     | 0                         | •    | •   |
| • •                                                                                                    | ٠   | • • | •   |     | •   | •                | ٠     | ٠        | ٠  | •   | ٠   | •  | ٠  | •   | •   | •  | ٠        | •              | ٠    |       | •                         | •    | •   |
| • •                                                                                                    | •   | • • | •   | •   | 0   | 0                | ٠     |          | •  | ٠   | •   | ٠  | 0  | ٠   | ٠   | •  | ٠        | ۰              | ٠    | •     | ٠                         | ٠    | •   |
| 0 0                                                                                                    | ٠   | • • | •   | 0   | •   | 0                | •     | ٠        | ٠  | •   | •   | ٠  | ٠  | •   | •   | •  | ٠        |                | 174  | Ωг    | ) TZ                      |      |     |
| 0 0                                                                                                    | •   | • • | 0   | 0   |     | 0                | ۰     | 0        | ٠  |     | ۰   | ٠  | •  | ٠   |     | ٠  | 0        |                |      |       | <u>s і т é</u><br>s і т ý |      |     |
| 2.                                                                                                     | •   | • • | •   | •   | •   | •                | •     | •        | •  | •   | •   | •  |    | •   | •   | •  |          |                | rede | efine | гне РС                    | SSIE | LE. |

### BACKGROUND – PETER LOVE



- Environmentalist (staff and board) with experience in non-governmental organizations, private sector and government agency
  Most recently Chief Energy Conservation Officer with the Ontario Power Authority
  Currently President of the Energy Services Association of Canada and Adjunct Professor at York University's Faculty of Environmental Studies
  - •BA, MBA, ICD.D





### **MY BICYCLE TRIP OF VIET NAM**



### ~





## COMPONENTS OF SUSTAINABLE ENERGY



faculty of environmental studies

| <ul> <li>Energy Efficiency &amp; Conservation (EE&amp;C)</li> </ul> | • • • • •                 |
|---------------------------------------------------------------------|---------------------------|
| •Renewable Energy                                                   |                           |
| <ul> <li>Smart Energy Network</li> <li>Flectric Grid</li> </ul>     | • • • • •                 |
| <ul> <li>Natural Gas Pipelines</li> <li>Energy Storage</li> </ul>   | • • • • •                 |
|                                                                     | • • • • •                 |
| 5                                                                   | YORK<br><u>UNIVERSITÝ</u> |

redefine THE POSSIBLE.





studies

faculty of environmental

## **BENEFITS - EMPLOYMENT**



#### **Empire State Building Retrofit:**

- 8 month design phase, 60 ideas considered, 8 projects (financial and environmental ROI).
- 3.1 year payback
- Initial \$20 million, 38% energy reduction, \$4.4 million savings annually.

www.esbnyc.com

Creation of hundreds of jobs



## **BENEFITS - ECONOMIC**



faculty of environmental studies



YORK UNIVERSITÉ UNIVERSITY redefine THE POSSIBLE.

8

# **BENEFITS - ENVIRONMENT**



- IPCC Most of the observed increase in the globally-average temperature since the mid 20<sup>th</sup> Century is *very likely (*i.e. > 90% likelihood) due to the observed increase in anthropogenic (i.e. man made) GHG concentrations
- IEA -rising fossil-fuel energy use will lead to irreversible and potentially catastrophic climate change
- Ban Ki-moon slowing or even reversing the existing trends of global warming is the defining challenge of our ages.
- World Economic Forum's climate change has the highest combined perceived impact and likelihood



| • • • • • | • • | • •                | •   | • • | • • | • • | •         | • • | • | • |
|-----------|-----|--------------------|-----|-----|-----|-----|-----------|-----|---|---|
| BENE      | FIT | ' <mark>S</mark> - | _ { | SE  | CU  | RI  | <b>TY</b> |     | - | • |
| SUPP      | LY  |                    | •   | • • |     | • • |           | • • | • | ٠ |



- As a major energy exporter, not a major issue in Canada
- Major issue in the US, Europe and Japan with limited domestic energy sources

|   | ( | ( |   | ) | ŀ | ζ |   | K |   |  |
|---|---|---|---|---|---|---|---|---|---|--|
| U | N | I | v | Е | R | S | T | т | É |  |
| U | Ν | I | ۷ | Е | R | S | I | Т | Y |  |

### THREE E's







## CONSERVATION

#### faculty of environmental studies

### Five Types

- Behavioural Conservation (no change in technology)
  - Energy Efficiency (technical improvements)
  - Demand Response (time of use)
- Fuel substitution (increases use of other fuel)
- On-site generation (excludes FIT contracts in Ontario)



### CHALLENGES OF CONSERVATION



- Most forms of energy and conservation is invisible
- Requires a Culture of Conservation as well as voluntary programs and minimum standards
- Requires all sectors to participate.
- Important role of pricing/elasticity of demand.



### IMPROVEMENTS IN ENERGY EFFICIENCY







## **TIME-OF-USE RATES**



faculty of environmental studies



YORK UNIVERSITY redefine THE POSSIBLE.

. .16

# ROLE FOR GOVERNMENT



- •Set aggressive targets, monitor/report on progress
- Develop, legislate and enforce codes and standards for buildings and equipment
- Establish permanent funding for voluntary conservation programs (paid by energy users, not government)
- Ensure proper evaluation, measurement and evaluation of all programs
- Encourage participation by private sector through energy performance contracts
- Set example in own facilities



### MAIN TYPES OF RENEWABLE ENERGY

.18



faculty of

| RENEVVABLE ENEI                   | RG     | Y .   | 0     | 0    | 0    | е    | nvir | onm<br>st | udie | al<br>SS |
|-----------------------------------|--------|-------|-------|------|------|------|------|-----------|------|----------|
| Wind                              | • •    | • •   | •     | •    | •    | •    | •    | •         | •    |          |
| Solar – water heaters             | • •    | • •   | •     | •    | 0    | •    | 0    | ٠         | •    | •        |
| - PV for electricity              | • •    | • •   | ٠     | ۰    | 0    | 0    | 0    | •         | ۰    | •        |
| Hydro – small and large           | • •    | • •   | •     | •    | 0    | •    | •    | •         | •    |          |
| Geothermal – low temperature for  | or hea | ting  | /co   | olir | ng   | 0    | 0    | •         | ۰    | •        |
| - high temperature fo             | or ele | ctric | ity   | 0    |      | 0    |      | ٥         | ۰    | •        |
| Biomass – combustion/gasification | on for | hea   | ∖t/el | ec   | tric | city |      | •         | •    |          |
| - anaerobic digestion for         | or me  | thar  | ne .  | •    | 0    | •    |      |           | •    |          |
| Ocean – waves, tides, current     | 0 0    | • •   | ۰     | ۰    | ٠    | ٠    | ۰    | ٠         | ٠    |          |
|                                   |        |       |       |      |      |      |      |           |      |          |



### CHALLENGES FOR RENEWABLE ENERGY



- •Many of most economic reserves already developed
  - especially large hydro
- Typically involve high up front cost with minimal operating cost
- Technical improvements expected to result in cost reductions in future
- Resource potential often not well understood/mapped

| J  | ľ  | (  | 0  | ) | F | 2  |     | K   |    |     |     |   |
|----|----|----|----|---|---|----|-----|-----|----|-----|-----|---|
| U  | Ν  | I  | ٧  | Е | R | S  | Т   | Т   | É  |     |     | 1 |
| U  | Ν  | I  | ۷  | Е | R | S  | I   | Т   | Y  |     |     |   |
| re | ed | le | fi | n | e | т⊦ | 1 E | : F | >0 | ssi | BLE |   |





# **ROLES FOR GOVERNMENT**



faculty of environmental studies

- •Set aggressive targets and monitor/report on progress
- Provide price support through a guaranteed, long term price using a feed-in tariff system
- Alternatively, set and enforce Renewable Portfolio Standard requiring specified amount of electricity or natural gas from renewables
- Ensure resource potential is identified/mapped and made publically available

22



# **SMART ENERGY NETWORK**



faculty of environmental studies

- Smart Electricity Grid
- Smart meters & rates to promote demand response
- facilitates integration of distributed generation
- improves responsiveness and reliability
- Smart Natural Gas Pipelines
- facilities integration of distributed sources from biomass
- improves responsiveness and reliability
- •Energy Storage

23





studies

faculty of environmental

# **SMART ENERGY NETWORK**



......

. 0

redefine THE POSSIBLE.

# ROLE FOR GOVERNMENT

25



faculty of environmental studies

Require phase in of smart meters over period of time
 Assign clear responsibility for implementation/operation



### LESSONS FROM CANADIAN EXPERIENCE



faculty of

environme stud

#### Important to have

26

- National Energy Strategy (development of conventional/ sustainable resources, smart network, energy & carbon pricing, and conservation
- Aggressive mandatory codes & standards
- Rate-payer funded voluntary conservation incentive programs
- Active energy service industry
- Feed-In-Tariff program for renewables
- Clear leadership in Smart Energy Network



| • | DISCUSSION            | 0    | •    | •  | • | • | • | • | • | • | 0 | 0 | e            | envir            | facu<br>onm<br>st         | Ity o<br>lenta<br>udie | of<br>al<br>S |
|---|-----------------------|------|------|----|---|---|---|---|---|---|---|---|--------------|------------------|---------------------------|------------------------|---------------|
| • | Dotor Lova            | ٠    | ٠    | •  | ٠ | • | • | • | ٠ | ٠ | ٠ | • | 0            | ٠                | ٠                         | •                      | •             |
| • | Peter Love            |      | ۰    | •  | ٠ | ۰ | • | • | • | • | ۰ | • | •            | •                | •                         | •                      | •             |
| • | Adjunct Professor     | 0    | ٠    | ٠  | ٠ | • | ٠ | ٠ | ٠ | ٠ | ۰ | 0 | ۰            | ٠                | ٠                         | ٠                      | •             |
| • | Sustainable Energy In | itia | ativ | e. | ٠ | 0 | ٠ | ٠ | • | ٠ | 0 | ٠ | 0            | ٠                | ٠                         | ٠                      | •             |
| • |                       |      | •    |    | ٠ | • | ٠ | ٠ | ٠ | ٠ | • |   | ٠            | •                | ٠                         | •                      | •             |
| • | York University       | 0    | ٠    | •  | ٠ | ٠ | ٠ | • | ٠ | • |   | 0 | •            | •                | •                         | ٠                      | •             |
| • | plove@yorku.ca        | 0    | ٠    | ٠  | ٠ | ۰ | ٠ | ٠ | ٠ | ٠ | 0 | ۰ | 0            | •                | ٠                         | ٠                      | •             |
| • | www.yorku.ca/se       | ۰    | •    | ٠  | ٠ | ۰ | • | • | • | • | • | • | ٠            | 0                | ٠                         | •                      | 0             |
| • |                       | ٥    | ٠    | ٠  | ٠ | ۰ | ٠ | ٠ | ٠ | ٠ | ٠ | 0 | ۰            | •                | ٠                         | ٠                      | •             |
| • | • • • • • • • • •     | 0    | ٠    | ٠  | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | • | ٠            | •                | ٠                         | ٠                      | •             |
| • | • • • • • • • • • •   | 0    | •    | •  | ٠ | • | • | • | • | • | ٠ |   | •            | •                | •                         | •                      | •             |
| • |                       | •    | •    | •  | • | 0 | • | ٠ | ٠ | • | ٠ | ٠ | ٠            | ٠                | ٠                         | •                      | •             |
| • |                       |      | ۰    | •  | ٠ | • | ٠ | ٠ | ٠ | ٠ | 0 |   | <b>X</b> 7 4 | $\sim r$         | . т <i>т</i>              |                        |               |
| • |                       | 0    | ٠    | •  | ٠ | • | • | • | • | • | ۰ |   |              |                  | K<br>s ι τ é              |                        |               |
|   | 27                    |      | •    | •  | • | • |   | • |   | • |   |   | UNI<br>rede  | V E R<br>efine 1 | s і т ў<br>г <b>не РО</b> | SSIBL                  | <b>.</b> E.   |